Skip to Content

Description

We live in a well-engineered universe. This engineering is present in every system and organism in existence, including in the actions and interactions of plants and animals. In fact, one could say that the function and movement of plants and animals is just as much a part of their makeup as chlorophyll and fiber or bone and blood. Consequently, if we want to understand the ecology of animals and plants especially in an integrated ecosystem, it follows that great insight can be gained by taking an approach that studies function and integration of parts rather than the individual parts themselves.

Ecology and Biomechanics: A Mechanical Approach to the Ecology of Animals and Plants offers a collection of state-of-the-art papers that ingeniously demonstrates how biomechanics can provide novel insights into long standing ecological and evolutionary questions. The majority of the book's chapters were originally presented at a symposium held at the annual meeting of the Society for Experimental Biology in Edinburgh, U.K., in 2004. Combining approaches from various disciplines, this volume covers subjects that encompass theoretical concepts and practical approaches involving research on both plants and animals, as well as interactions between the two.

Although most of the examples emphasize distinct organism-environment relationships such as the grazing of ruminants, the book also includes a few examples that span larger temporal and spatial scales, achieving wider application across ecosystems. This can be seen in the chapter Implications of Microbial Motility on the Water Column Ecosystems, which highlights how microbial ecosystems can be understood from the mechanics, morphology, and motile responses of the individual organisms.

Designed to serve as a reference for students and researchers, Ecology and Biomechanics: A Mechanical Approach to the Ecology of Animals and Plants paves the way for further research by demonstrating what can happen when the approaches from two seemingly disparate subdisciplines within the field of biology are creatively combined.

Reviews

"I found approximately half of the articles to be exceptional in quality, and almost all of the others to be of some merit. …I recommend it for investigators in ecology and biomechanics as well as for graduate seminars aimed at both audiences."

-Douglas Altshuler, The Quarterly Review of Biology, December 2006

"This book covers biomechanical topics on the most diverse range of organisms I have seen in one volume, from microbes to lizards to trees … a useful reference tool for biologists working in many areas … well produced … nice use of introductory outlines and section headings, and clear line art … It may be particularly valuable to graduate students and researchers early in their careers, because it contains so many ideas for new research directions."

-David E. Alexander, University of Kansas, USA, in Ecology, Vol. 87, No. 12, December 2006

Contents

Tree Biomechanics and Growth Strategies in the Context of Forest Functional Ecology, M. Fournier, A. Stokes, C. Coutand, T. Fourcaud, and B. Moulia

Diversity of Mechanical Architectures in Climbing Plants: An Ecological Perspective, N. Rowe, S. Isnard, F. Gallenmüller, and T. Speck

The Role of Blade Buoyancy and Reconfiguration in the Mechanical Adaptation of the Southern Bullkelp Durvillaea, D.L. Harder, C.L. Stevens, T. Speck, and C.L. Hurd

Murray's Law and the Vascular Architecture of Plants, K.A. McCulloh and J.S. Sperry

Plant-Animal Mechanics and Bite Procurement in Grazing Ruminants, W.M. Griffiths

Biomechanics of Salvia Flowers: The Role of Lever and Flower Tube in Specialization on Pollinators, M. Reith, R. Claßen-Bockhoff, and T. Speck

Do Plant Waxes Make Insect Attachment Structures Dirty? ExperimentalEvidences for the Contamination Hypothesis, E. Gorb and S. Gorb

Ecology and Biomechanics of Slippery Wax Barriers and Wax Running to Macaranga - Ant Mutualisms, W. Federle and T. Bruening

Nectar Feeding in Long-Proboscid Insects, B.J. Borrell and H.W. Krenn

Biomechanics and Behavioral Mimicry in Insects, Y. Golding and R. Ennos

Interindividual Variation in the Muscle Physiology of Vertebrate Ectotherms: Consequences for Behavioral and Ecological Performance, C.A. Navas, R.S. James, and R.S. Wilson

Power Generation during Locomotion in Anolis Lizards: An Ecomorphological Approach, B. Vanhooydonck, P. Aerts, D.J. Irschick, and A. Herrel

Implications of Microbial Motility on the Water Column Ecosystems, K. Christensen-Dalsgaard

The Biomechanics of Ecological Speciation, J. Podos and A. Hendry

Related Subjects

  1. Zoology
  2. Botany

Name: Ecology and Biomechanics: A Mechanical Approach to the Ecology of Animals and Plants (Hardback)CRC Press 
Description: Edited by Anthony Herrel, Thomas Speck, Nicholas P. RoweContributors: Jeffrey Podos, E. Gorb, Carlos A. Navas, Katherine McCulloh, Brendan Borrell, Karen Kirstine Christensen-Dalsgaard, Wendy Griffiths, Walter Federle, Martin Reith, Deane Harder, Meriem Fournier, Bieke Vanhooydonck, Yvonne Golding, Stanislav N. Gorb, Anthony Roland Ennos, John Sperry, Tanja Bruening, Sandrine Isnard, Friederike Gallenmuller, Peter Aerts, Alexia Stokes, Catherine Coutand, Thierry Fourcaud, Bruno Moulia, Craig L. Stevens, Catriona L. Hurd, Regine Clapen-Bockhoff, Harald W. Krenn, Rob S. James, Robbie S. Wilson, Duncan J. Irschick, Andrew P. Hendry. We live in a well-engineered universe. This engineering is present in every system and organism in existence, including in the actions and interactions of plants and animals. In fact, one could say that the function and movement of plants and animals is...
Categories: Zoology, Botany