Skip to Content

Description

The automated identification of biological objects or groups has been a dream among taxonomists and systematists for centuries. However, progress in designing and implementing practical systems for fully automated taxon identification has been frustratingly slow. Regardless, the dream has never died. Recent developments in computer architectures and innovations in software design have placed the tools needed to realize this vision in the hands of the systematics community, not several years hence, but now. And not just for DNA barcodes or other molecular data, but for digital images of organisms, digital sounds, digitized chemical data - essentially any type of digital data.

Based on evidence accumulated over the last decade and written by applied researchers, Automated Taxon Identification in Systematics explores contemporary applications of quantitative approaches to the problem of taxon recognition. The book begins by reviewing the current state of systematics and placing automated taxon identification in the context of contemporary trends, needs, and opportunities. The chapters present and evaluate different aspects of current automated system designs. They then provide descriptions of case studies in which different theoretical and practical aspects of the overall group-identification problem are identified, analyzed, and discussed.

A recurring theme through the chapters is the relationship between taxonomic identification, automated group identification, and morphometrics. This collection provides a bridge between these communities and between them and the wider world of applied taxonomy. The only book-length treatment that explores automated group identification in systematic context, this text also includes introductions to basic aspects of the fields of contemporary artificial intelligence and mathematical group recognition for the entire biological community.

Contents

Introduction, N. MacLeod

Digital Innovation and Taxonomy's Finest Hour, Q.D. Wheeler

Natural Object Categorization: Man versus Machine, P.F. Culverhouse

Neural Networks in Brief, R. Lang

69Morphometrics and Computer Homology: An Old Theme Revisited, F.L. Bookstein

The Automated Identification of Taxa: Concepts and Applications, D. Chesmore

DAISY: A Practical Computer-Based Tool for Semi-Automated Species Identification, M.A. O'Neill

Automated Extraction and Analysis of Morphological Features for Species Identification, V. Steinhage, S. Schröder, K.-H. Lampe and A.B. Cremers

Introducing SPIDA-Web: Wavelets, Neural Networks and Internet Accessibility in an Image-Based Automated Identification System, K.N. Russell, M.T. Do, J.C. Huff and N.I. Platnick

Automated Tools for the Identification of Taxa from Morphological Data: Face Recognition in Wasps, N. MacLeod, M. O'Neill and S. Walsh

Pattern Recognition for Ecological Science and Environmental Monitoring: An Initial Report, E.N. Mortensen, E.L. Delgado, H. Deng, D. Lytle, A. Moldenke, R. Paasch, L. Shapiro, P. Wu, W. Zhang and T.G. Dietterich

Plant Identification from Characters and Measurements Using Artificial Neural Networks, J.Y. Clark

Spot the Penguin: Can Reliable Taxonomic Identifications Be Made Using Isolated Foot Bones? S.A. Walsh, N. MacLeod and M. O'Neill

A New Semi-Automatic Morphometric Protocol for Conodonts and a Preliminary Taxonomic Application, D. Jones and M. Purnell

Decision Trees: A Machine-Learning Method for Characterizing Morphological Patterns Resulting from Ecological Adaptation, M. Mendoza

Data Integration and Multifactorial Analyses: The Yeasts and the BioloMICS Software as a Case Study, R. Vincent

Automatic Measurement of Honeybee Wings, A. Tofilski

Good Performers Know Their Audience! Identification and Characterization of Pitch Contours in Infant- and Foreigner-Directed Speech, M.A. Knoll, S.A. Walsh, N. MacLeod, M. O'Neill and M. Uther

Index

Name: Automated Taxon Identification in Systematics: Theory, Approaches and Applications (Hardback)CRC Press 
Description: Edited by Norman MacLeodSeries Editor: Alan WarrenContributors: Quentin D. Wheeler, David Jones, Eric N. Mortensen, Kimberly Norris Russell, Adam Tofilski, Fred L. Bookstein, David Chesmore, Phillip Culverhouse, Manuel Mendoza, Mark A. O'Neill, Richard A. Reyment, Jonathan Y. Clark, Monja A. Knoll, Robert Lang, Vincent Robert, Volker Steinhage, Stig A.A. Walsh, Armin B. Cremers, Enrique L. Delgado, Hongli Deng, Thomas G. Dietterich, Martin T. Do, Jeremy C. Huff, Karl-Heinz Lampe, David Lytle, Andrew Moldenke, Robert Paasch, Norman I. Platnick, Mark Purnell, Linda Shapiro, Stefan Schroder, Maria Uther, Pengcheng Wu, Wei Zhang. The automated identification of biological objects or groups has been a dream among taxonomists and systematists for centuries. However, progress in designing and implementing practical systems for fully automated taxon identification has been...
Categories: Natural History, Bioinformatics, Data Preparation & Mining